¼«Ôÿª»§Æ½Ì¨

English ¼«Ôÿª»§Æ½Ì¨¼¯ÍÅÆóÒµÓÊÏä

ÊÀ½çÉúÃü¿ÆÑ§Ç°Ñض¯Ì¬Öܱ¨£¨ÎåÊ®Áù£©

2011Äê-09ÔÂ-11ÈÕ À´Ô´£ºmebo

£¨9.5-9.11/2011£©
¼«Ôÿª»§Æ½Ì¨¹ú¼Ê¼¯ÍÅ:ÌÕ¹úР


¡¡¡¡Ö÷ÒªÄÚÈÝ£ºÈ«Ãæ±ÈÁ¦ÅßÌ¥¸Éϸ°ûºÍÓÕµ¼¶àÄܸÉϸ°ûµÄÂѰ×ÖÊ×飻ÄÍÁ¦¶ÍÁ¶Äܹ»´Ù½ø¹ÇËèÔìѪ×÷Ó㻽â¾ö¿¹°©Ò©ÎҩÐÔµÄмÆÄ±£»×ÔÍÌÊÉͨ¹ýÈÜøÌåË®½âµ÷ÖÎÅÝĭϸ°ûÖе¨¹Ì´¼ÍâÁ÷£»Ë¥ÀϵÄϵͳ»·¾³½µµÍÁËÉñ¾­ÐγɺÍÈÏÖª¹¦Ð§£»Tϸ°û¼±ÐÔÁܰÍϸ°û°×Ѫ²¡ÓëÒȵºËØÑùÉú³¤Òò×ÓÊÜÌå1¹ý¸ß±í´ïÓÐ¹Ø ¡£

¡¡¡¡½¹µã¶¯Ì¬£º½â¾ö¿¹°©Ò©ÎҩÐÔµÄмÆÄ± ¡£

1.  È«Ãæ±ÈÁ¦ÅßÌ¥¸Éϸ°ûºÍÓÕµ¼¶àÄܸÉϸ°ûµÄÂѰ×ÖÊ×é

¡¾¶¯Ì¬¡¿    
¡¡¡¡ÃÀ¹ú¿ÆÑ§¼ÒÀûÓøß×¼¶ÈÖÊÆ×¡¢Í¬Î»ËرêÖ¾ºÍ¶àÔª»¯´ó¹æÄ£¶¨Á¿·ÖÎöÂѰ×ÐÅÏ¢µÄÈí¼þÏà½áºÏµÄ¼¼Êõ£¬ÈýÖØ²â¶¨ÁËËÄÖÖÅßÌ¥¸Éϸ°ûºÍËÄÖÖÓÕµ¼¶àÄܸÉϸ°ûµÄ·Ç³£È«ÃæµÄÂѰ×ÖÊ×é ¡£Õâ24¸ö¶àÄÜϸ°ûÑù±¾µÄ±ÈÁ¦·¢ÉúÁËÒ»´óÌ×¼ø¶¨µÄÂѰ×ÖʺÍÁ×Ëữλµã ¡£Æäͳ¼Æ·ÖÎöÏÔʾÅßÌ¥¸Éϸ°ûºÍÓÕµ¼¶àÄܸÉϸ°ûÔÚÂѰױí´ïºÍÂѰ×Á×Ëữ·½Ãæ´æÔÚ΢Сµ«¿ÉÖØ¸´µÄ²îÒì ¡£½«ÕâЩÊý¾ÝºÍRNAÐòÁзÖÎöÊý¾ÝºÏ²¢£¬ËûÃÇ·¢ÏÖÔÚ¸÷¸öµ÷ÖβãÃæÉÏ´æÔÚÓ빦ЧÏà¹ØµÄ²îÒì ¡£ÎÄÕÂÖÐÒ²½éÉÜÁ˸Éϸ°û×éѧ¿â£¨SCOR£©,Ò»¸ö×ÊÔ´¿âÓÃÓں˶ԺÍÏÔʾ¶à²ãÃæÕÉÁ¿µÄ¶¨Á¿ÐÅÏ¢£¬°üÂÞmRNA¡¢ÂѰ×Öʺͷ­ÒëºóÐÞÊÎ ¡£ÕâÊǵÚÒ»´Î¶ÔÂѰ×ÖÊ×é½øÐÐÁËÈç´ËϸÖÂÈ«ÃæµÄ±ÈÁ¦£¬µÃÒæÓÚÂѰ×ÖÊÖÊÆ×¾«¶ÈµÄÌá¸ßºÍÒ»´Î±ÈÁ¦¶à´ï8ÖÖϸ°ûϵµÄ¼¼Êõ ¡£µ«ÊÇÓÉÓÚÓÃÓÚÁÙ´²µÄ»°ÐèÒª¶àÄÜϸ°û·Ö»¯³É¾ßÓÐÌØ¶¨¹¦Ð§µÄÌåϸ°û£¬ËùÒÔ»¹ÐèÒª½øÒ»²½Ñо¿¸Éϸ°û·Ö»¯ºóµÄÂѰ×Éú²úÇé¿ö ¡£

¡¾µãÆÀ¡¿
¡¡¡¡Ä¿Ç°µÄ¼¼Êõ½ø²½Ê¹µÃ¿ÆÑ§¼ÒÃÇ¿ÉÒÔ¸üÉîÈëµÄÑо¿Ï¸°ûÖ®¼äËùº¬ÎïÖÊÉí·ÖµÄ²îÒ죬¶ÔÓÚÑо¿Ï¸°ûµÄÉú³¤±ä»¯¹ý³ÌºÜÓÐ×ÊÖú ¡£µ«ÊǶÔÓÚ¶àÄܸÉϸ°ûµÄÁÙ´²Ó¦ÓÃÍÆ¶¯²»´ó£¬ÕâÊÇϸ°ûÒÆÖ²µÄÌæ´úÁÆ·¨¹ÌÓÐȱÏÝËù¾ö¶¨µÄ ¡£

¡¾²Î¿¼ÂÛÎÄ¡¿
Nature Methods, 2011; DOI:10.1038/nmeth.1699
Proteomic and phosphoproteomic comparison of human ES and iPS cells
Douglas H Phanstiel, Justin Brumbaugh, Craig D Wenger, et al.
Combining high-mass-accuracy mass spectrometry, isobaric tagging and software for multiplexed, large-scale protein quantification, we report deep proteomic coverage of four human embryonic stem cell and four induced pluripotent stem cell lines in biological triplicate. This 24-sample comparison resulted in a very large set of identified proteins and phosphorylation sites in pluripotent cells. The statistical analysis afforded by our approach revealed subtle but reproducible differences in protein expression and protein phosphorylation between embryonic stem cells and induced pluripotent cells. Merging these results with RNA-seq analysis data, we found functionally related differences across each tier of regulation. We also introduce the Stem Cell¨COmics Repository (SCOR), a resource to collate and display quantitative information across multiple planes of measurement, including mRNA, protein and post-translational modifications.

1.ÄÍÁ¦¶ÍÁ¶Äܹ»´Ù½ø¹ÇËèÔìѪ×÷ÓÃ
¡¾¶¯Ì¬¡¿
¡¡¡¡ÄÍÁ¦¶ÍÁ¶Äܹ»´Ù½ø¹ÇËèÔìѪ×÷Ó㬠¼ÓÄôó¿ÆÑ§¼ÒÑо¿ÁËÄÍÁ¦ÑµÁ·¶ÔÔìѪ×÷ÓõÄÖ±½ÓÓ°Ïì¼°Æä¿ÉÄܵÄ×÷ÓûúÖÆ ¡£ÔÚÅܲ½»úÉÏѵÁ·4ÖÜ´óµÄÐÛÐÔC57Bl/6ÀÏÊóÊ®¸öÐÇÆÚ£¬ËÙ¶ÈÖð²½Ìá¸ß£¬×îºóÒ»´ÎѵÁ·Á½ÌìºóÊÕ¼¯×éÖ¯ ¡£ÓÃÁ÷ʽϸ°ûÒÇ¡¢¶ìÂÑÊ¯ÇøÓòÐγÉϸ°ûʵÑé¡¢¼×»ùÏËÎ¬ËØ¾úÂäÐγÉʵÑéÆÀ¼Û¹ÇËèÖб»·¢¶¯µÄÔìѪ¸Éϸ°ûºÍ×æÏ¸°û ¡£ÓÃʵʱ¶¨Á¿PCRºÍÂѰ×ÖÊÓ¡¼£ÊµÑé²â¶¨ÔìѪϸ°ûÒò×ӵķ¢Éú ¡£ÓÃ×黯ʵÑéÆÀ¼Û¹ÇËè΢»·¾³¶ÔѵÁ·µÄÊÊÓ¦ÐԱ仯 ¡£¶ÔÓÚ²îÒìÀàÐÍϸ°û£¬ÄÍÁ¦ÑµÁ·Äܹ»Ôö¼Ó¹ÇËèÖб»·¢¶¯µÄÔìѪ¸Éϸ°ûºÍ×æÏ¸°û50%µ½800% ¡£ÑµÁ·Í¬Ê±¼õÉÙÁË78%µÄ¹ÇËèǻ֬·¾£¬Ôö¼ÓÁËÖÁÉÙ60%¹Ç÷À¼¡ÔìѪÒò×ӵıí´ï ¡£ ²»Ô˶¯µÄÀÏÊó×÷ΪÒÔÉÏʵÑéµÄ¶ÔÕÕ×é ¡£½áÂÛÊÇ£¬ÄÍÁ¦ÑµÁ·´ó´ó´Ù½øÁËÔìѪ×÷Ó㬻úÖÆÊÇͨ¹ý¸ÄÉÆ¹ÇËè΢»·¾³½á¹¹ºÍÔö¼Ó¹Ç÷À¼¡ÔìѪÒò×ӵıí´ï ¡£Ò»ÖÜÈý´Î£¬Ã¿´ÎÅܲ»µ½°ëСʱ£¬ÒÑ×ã¹»¶ÔʵÑéÊóµÄ¹ÇËèÔìѪ×÷Ó÷¢ÉúÏÔÖøÓ°Ïì ¡£

¡¾µãÆÀ¡¿
¡¡¡¡¼ä³äÖʸÉϸ°û×î¿ÉÄÜÄð³ÉÖ¬·¾»ò¹Çϸ°û£¬È¡¾öÓÚËù×ß·Ïß ¡£ÀûÓÃÅܲ½»úѵÁ·ÀÏÊ󣬸ÃÑо¿±íÃ÷ÓÐÑõ¶ÍÁ¶´¥·¢ÕâЩϸ°û¸ü¶àÄð³É¹Çϸ°û¶ø²»ÊÇÖ¬·¾£¬¶ø²»Ô˶¯µÄÀÏÊóµÄÏàͬ¸Éϸ°û¸ü¶àÄð³ÉÖ¬·¾ ¡£

¡¾²Î¿¼ÂÛÎÄ¡¿
The FASEB Journal, 2011; DOI: 10.1096/fj.11-189043
Endurance exercise training promotes medullary hematopoiesis
J. M. Baker, M. De Lisio, G. Parise.
Endurance exercise is a poorly defined yet powerful mediator of hematopoiesis. The purpose of this study was to directly investigate the effects of endurance exercise training on hematopoiesis and to identify potential mechanisms responsible for any observed changes. Four-week-old male C57Bl/6 mice were trained on a treadmill at progressive speeds over a 10-wk period. Tissues were harvested 2 d following the final training session. Flow cytometry, the cobblestone area-forming cell assay, and the methycellulose colony-forming unit assay were used to assess medullary and mobilized hematopoietic stem and progenitor cells. Quantitative real-time PCR and Western blots were used to measure hematopoietic cytokine production. Histochemistry was also used to assess adaptations to exercise in the bone marrow niche. Depending on the cell type, endurance training increased medullary and mobilized hematopoietic stem and progenitor cell content from 50 to 800%. Training also reduced marrow cavity fat by 78%. Skeletal muscle hematopoietic cytokine expression was also increased at least 60% by training. Sedentary mice served as controls for the above experiments. In conclusion, endurance exercise training greatly promotes hematopoiesis and does so through improvements in medullary niche architecture as well as increased skeletal muscle hematopoietic cytokine production.-Baker, J. M., De Lisio, M., Parise, G. Endurance exercise training promotes medullary hematopoiesis.

3.  ½â¾ö¿¹°©Ò©ÎҩÐÔµÄмÆÄ±

¡¾¶¯Ì¬¡¿
¡¡¡¡Î÷Í×Îôµ¥¿¹ÊÇÕë¶Ô±íƤÉú³¤Òò×ÓÊÜÌ壨EGFR£©µÄ¿¹Ì壬ÁÙ´²ÄÜÓÐЧÖÎÁƽ᳦ֱ³¦°©¡¢Í·¾±°©ºÍ·ÇСϸ°û·Î°©£¬ÌرðÊÇÓÐÒ°ÉúÐÍÖ°©»ùÒòKRAS ºÍBRAFµÄ°©Ö¢ ¡£µ«×îÖÕ¶¼ÒòΪÖð½¥·¢ÉúµÄ¿¹Ò©ÐÔ¶øÏÞÖÆÁËÆäÖÎÁÆÐ§¹û£¬¶ø¿¹Ò©ÐÔÔ­Òò»¹²»Çå³þ ¡£ÃÀ¹ú¿ÆÑ§¼Ò¼°Æä¹ú¼ÊºÏ×÷ÕßµÄ×îÐÂÑо¿ÏÔʾ¼¤»îϸ°ûÖÐERBB2ÐźÅ£¬²»¹ÜÊÇͨ¹ýÀ©ÔöERBB2»¹ÊÇÉϵ÷heregulin£¬¶¼Êз¢Éú³Ö¾ÃµÄϸ°ûÍâÐźŵ÷Öεļ¤Ã¸1/2ÐźÅ£¬½á¹ûµ¼ÖÂÎ÷Í×Îôµ¥¿¹¿¹Ò©ÐÔ ¡£ÒÖÖÆERBB2»òÆÆ»µERBB2/ERBB3Òì¶þ¾ÛÌåÄܹ»»Ö¸´ÌåÄÚÍâ¶ÔÎ÷Í×Îôµ¥¿¹µÄÃô¸ÐÐÔ ¡£ÓÐÒ»×éÌåÏÖ³öÐÂÉúµÄ»ò»ñµÃÐÔµÄÎ÷Í×Îôµ¥¿¹¿¹Ò©ÐԵĽ᳦ֱ³¦°©»¼Õß·ºÆðERBB2À©Ôö»ò¸ßˮƽÈËѪҺheregulin ¡£ºÏÔÚÒ»Æð¿´£¬ÕâЩ·¢ÏÖÈ·¶¨ÁËÁ½ÖÖ²îÒìµÄ¿¹Ò©ÐÔ»úÖÆ£¬¶¼´Ù½øÁ˽鵼Î÷Í×Îôµ¥¿¹¿¹Ò©ÐÔµÄÒì³£ERBB2ÐźŠ¡£¶øÇÒ£¬ÕâЩ½á¹ûÌáʾERBB2ÒÖÖÆ¼ÁÓëÎ÷Í×Îôµ¥¿¹ÁªºÏʹÓÿÉÄÜÊǺÏÀíµÄÖÎÁƼÆÄ±£¬Ó¦¸ÃÔÚÎ÷Í×Îôµ¥¿¹¿¹Ò©µÄ»¼ÕßÖнøÐÐÆÀ¼Û ¡£

¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÑо¿·¢ÏÖÁËÎ÷Í×Îôµ¥¿¹¿¹Ò©µÄ»¼ÕßÖзºÆðµÄÌæ´úEGFRµÄERBB2ÐźÅʹµÃ°©Ï¸°ûµÃÒÔ¹æ±ÜÎ÷Í×Îôµ¥¿¹µÄÉ˺¦£¬¶ÂסERBB2ÐźÅ;¾¶¿ÉÒÔ»Ö¸´Î÷Í×Îôµ¥¿¹µÄµÄ¿¹°©Ð§¹û ¡£Ö»ÊÇÕâÖÕ¾¿ÊDZ»¶¯µÄÓ¦¶Ô´ëÊ©£¬²»ÖªµÀʲôʱºò°©Ï¸°ûÓÖÉú³¤³öÁíÒ»ÖÖ¿¹Ò©»úÖÆ ¡£Ñ°ÕÒ°©Ö¢·¢²¡µÄ×î»ù´¡Ô­Òò£¬¿ª·¢Ö÷¶¯Ô¤·ÀºÍÖÎÁƵÄ;¾¶²ÅÊÇ»ù´¡½â¾ö°©Ö¢µÄ·½Ê½ ¡£

¡¾²Î¿¼ÂÛÎÄ¡¿
Science Translational Medicine, 2011; 3 (99): 99ra86 DOI:10.1126/scitranslmed.3002442
Activation of ERBB2 Signaling Causes Resistance to the EGFR-Directed Therapeutic Antibody Cetuximab
Kimio Yonesaka, Kreshnik Zejnullahu, Isamu Okamoto, et al.
Cetuximab, an antibody directed against the epidermal growth factor receptor, is an effective clinical therapy for patients with colorectal, head and neck, and non-small cell lung cancer, particularly for those with KRAS and BRAF wild-type cancers. Treatment in all patients is limited eventually by the development of acquired resistance, but little is known about the underlying mechanism. Here, we show that activation of ERBB2 signaling in cell lines, either through ERBB2 amplification or through heregulin up-regulation, leads to persistent extracellular signal-regulated kinase 1/2 signaling and consequently to cetuximab resistance. Inhibition of ERBB2 or disruption of ERBB2/ERBB3 heterodimerization restores cetuximab sensitivity in vitro and in vivo. A subset of colorectal cancer patients who exhibit either de novo or acquired resistance to cetuximab-based therapy has ERBB2 amplification or high levels of circulating heregulin. Collectively, these findings identify two distinct resistance mechanisms, both of which promote aberrant ERBB2 signaling, that mediate cetuximab resistance. Moreover, these results suggest that ERBB2 inhibitors, in combination with cetuximab, represent a rational therapeutic strategy that should be assessed in patients with cetuximab-resistant cancers.

4.  ×ÔÍÌÊÉͨ¹ýÈÜøÌåË®½âµ÷ÖÎÅÝĭϸ°ûÖе¨¹Ì´¼ÍâÁ÷

¡¾¶¯Ì¬¡¿
¡¡¡¡Ö¬µÎÊǾÞÊÉϸ°ûÐγɵÄÅÝĭϸ°ûÖд¢´æµ¨¹Ì´¼µÄÖ÷ÒªµØ·½£¬Ò²ÊÇÖÎÁƶ¯ÂöÖàÑùÓ²»¯µÄDZÔڰеã ¡£ÒÔµ¨çÞ´¼õ¥ÐÎʽ´¢´æµÄµ¨¹Ì´¼´ÓÕâÀïÊͷųöÀ´×ªÔ˵½µ¨¹Ì´¼½ÓÊÜÌå ¡£ÏÖÓÐÀíÂÛÈÏΪϸ°ûÖÊÄÚµ¨çÞ´¼õ¥µÄË®½â¶¼ÊÇÖÐÐԵĵ¨çÞ´¼õ¥Ë®½âøµÄ×÷Óà ¡£¶øÃÀ¹úºÍ¼ÓÄôóµÄ¿ÆÑ§¼Ò×î½ü·¢ÏÖÔÚÍÌÈ뵨¹Ì´¼µÄ¾ÞÊÉϸ°ûÖУ¬³ýÁËÖÐÐԵĵ¨çÞ´¼õ¥Ë®½âø£¬ÈÜøÌåÔÚË®½âÖ¬µÎµ¨çÞ´¼õ¥ÖÐÒ²ÆðÖØÒª×÷Óà ¡£´ËÍ⣬ËûÃÇ»¹·¢ÏÖÖ¬µÎÊÇͨ¹ý×ÔÍÌÊɽøÈëÈÜøÌ壬ÆäÖеÄÈÜøÌåËáÐÔÖ¬·¾Ã¸Ë®½âÖ¬µÎµ¨çÞ´¼õ¥·¢ÉúÓÎÀ뵨¹Ì´¼£¬Ö÷ÒªÊÇΪÁËABCA1ÒÀÀµµÄÍâÁ÷ ¡£ÕâÒ»¹ý³ÌÊDZ»¾ÞÊÉϸ°ûÍÌÈ뵨¹Ì´¼ËùÌØÒìÓÕµ¼ ¡£ËûÃǵĽáÂÛÊǾÞÊÉϸ°ûÐγɵÄÅÝĭϸ°ûÖУ¬ÈÜøÌåµÄË®½â×÷ÓüÓÈëÁË·¢¶¯Ö¬µÎÖе¨¹Ì´¼½øÐÐÄæÐÐתÔË ¡£

¡¾µãÆÀ¡¿
¡¡¡¡µ¨¹Ì´¼ÔÚ¶¯Âö±ÚÉÏ»ýÀÛµ¼Ö¶¯ÂöÖàÑùÓ²»¯»ò¶¯ÂöÏÁÕ­ÖÂʹ¶ÂÈû¼õÉÙÐÄÔàѪÁ÷£¬¾­³£×îÖÕ·¢ÉúÖзçºÍÐÄÔಡ·¢×÷ ¡£¸ÃÑо¿·¢ÏÖµÄ×ÔÍÌÊÉÔÚË®½âÖ¬µÎµ¨¹Ì´¼ÖÐÆð×÷Ó㬿ÉÒÔ´Ùʹµ¨¹Ì´¼´ÓÅÝĭϸ°ûÖÐÏòÍâתÔ˶ø²»ÊÇÄÚÁ÷»ýÀÛ£¬´Ó¶ø¼õÇᵨ¹Ì´¼ÔÚ¶¯Âö±ÚÉϵĻýÀÛ ¡£

¡¾²Î¿¼ÂÛÎÄ¡¿
Cell Metabolism, 2011; 13 (6): 655 DOI: 10.1016/j.cmet.2011.03.023
Autophagy Regulates Cholesterol Efflux from Macrophage Foam Cells via Lysosomal Acid Lipase
Mireille Ouimet, Vivian Franklin, Esther Mak, et al.
The lipid droplet (LD) is the major site of cholesterol storage in macrophage foam cells and is a potential therapeutic target for the treatment of atherosclerosis. Cholesterol, stored as cholesteryl esters (CEs), is liberated from this organelle and delivered to cholesterol acceptors. The current paradigm attributes all cytoplasmic CE hydrolysis to the action of neutral CE hydrolases. Here, we demonstrate an important role for lysosomes in LD CE hydrolysis in cholesterol-loaded macrophages, in addition to that mediated by neutral hydrolases. Furthermore, we demonstrate that LDs are delivered to lysosomes via autophagy, where lysosomal acid lipase (LAL) acts to hydrolyze LD CE to generate free cholesterol mainly for ABCA1-dependent efflux; this process is specifically induced upon macrophage cholesterol loading. We conclude that, in macrophage foam cells, lysosomal hydrolysis contributes to the mobilization of LD-associated cholesterol for reverse cholesterol transport.

5.  Ë¥ÀϵÄϵͳ»·¾³½µµÍÁËÉñ¾­ÐγɺÍÈÏÖª¹¦Ð§

¡¾¶¯Ì¬¡¿
¡¡¡¡ÔÚÖÐÊàÉñ¾­ÏµÍ³£¬Ë¥Àϵ¼Ö³ÉÌåÉñ¾­¸Éϸ°û/×æÏ¸°ûÒÔ¼°Éñ¾­ÐγɵÄѸËÙ¼õÉÙ£¬Í¬Ê±ÅãͬÈÏÖª¹¦Ð§µÄË𺦠¡£ÓÐȤµÄÊÇ£¬ÕâÖÖË𻵿ÉÒÔͨ¹ýϵͳ¸ÉÔ¤Èç¶ÍÁ¶ÉíÌå¶ø¼õÇá ¡£ÃÀ¹ú¿ÆÑ§¼ÒÀûÓÃÒìʱÒìÖÖ¹²Éú±íÃ÷È«Éí´æÔÚµÄѪԴÐÔÒò×ÓÄܹ»ÒÔÄêÁäÒÀÀµÐԵķ½Ê½ÒÖÖÆ»ò´Ù½øÀÏÊóµÄ³ÉÌåÉñ¾­ÐγÉ£¬ÏàÓ¦µÄ£¬ÄêÇáÀÏÊóÖÃÓÚÀϵÄÈ«Éí»·¾³»ò½Ó´¥ÀÏÁäÀÏÊóµÄѪ½¬»á½µµÍÍ»´¥¿ÉËÜÐÔ£¬Ë𺦶Կ־åÒò¹û¹ØÏµºÍ¶Ô¿Õ¼äµÄÈÏÖªºÍ¼ÇÒä ¡£ËûÃÇÈ·¶¨Á˰üÂÞCCL11£¨¼´ÊÈËáϸ°û¼¤»îÇ÷»¯Òò×Ó£© ÔÚÄÚµÄϸ°ûÒò×ÓѪ½¬Ë®Æ½ÓëÒìʱÒìÖÖ¹²ÉúºÍË¥ÀÏÀÏÊóÖеÄÉñ¾­ÐγɼõÉÙÓйØ£¬ÔÚ½¡¿µÀÏÄêÈ˵ÄѪ½¬ºÍÄÔ¼¹ÒºÖÐÕâЩϸ°ûÒò×ÓˮƽÔö¸ß ¡£×îºó£¬ÔÚÄêÇáÀÏÊóÌåÄÚÔö¼ÓÍâÖÜCCL11Ç÷»¯Òò×Óˮƽ¼õÉÙÁ˳ÉÌåÉñ¾­ÐγɺÍËðº¦ÁËѧϰ¼ÇÒäÄÜÁ¦ ¡£ËùÓеÄÊý¾ÝºÏÔÚÒ»Æð˵Ã÷ÁËË¥ÀϹý³ÌÖÐÊӲ쵽µÄÉñ¾­ÐγɼõÉÙºÍÈÏÖª¹¦Ð§Ë𺦲¿ÃÅÊÇÓÉÓÚѪԴÐÔϸ°ûÒò×ӵı仯 ¡£

¡¾µãÆÀ¡¿
¡¡¡¡¸ÃÑо¿Ëù·¢ÏÖµÄѪҺϸ°ûÒò×ӵı仯ÓëË¥ÀϱíÕ÷Ö®¼äÓйØÁª£¬ËüÃÇÊÇÏ໥´Ù½ø»¹ÊÇ»¥ÎªÒò¹û²¢²»Ê®·ÖÇå³þ ¡£µ«ÊÇÈç¹û²»´Ó»ù´¡ÉϽâ¾öË¥ÀÏÎÊÌ⣬ÕâЩÏÖÏó×ܻᷢÉú£¬ÖÁÓÚËüÃÇÖ®¼äµÄÏ໥¹ØÏµ¾Í²»ÖØÒªÁË ¡£

¡¾²Î¿¼ÂÛÎÄ¡¿
Nature, 2011; 477 (7362): 90 DOI:10.1038/nature10357
The ageing systemic milieu negatively regulates neurogenesis and cognitive function
Saul A. Villeda, Jian Luo, Kira I. Mosher, et al. 
In the central nervous system, ageing results in a precipitous decline in adult neural stem/progenitor cells and neurogenesis, with concomitant impairments in cognitive functions. Interestingly, such impairments can be ameliorated through systemic perturbations such as exercise. Here, using heterochronic parabiosis we show that blood-borne factors present in the systemic milieu can inhibit or promote adult neurogenesis in an age-dependent fashion in mice. Accordingly, exposing a young mouse to an old systemic environment or to plasma from old mice decreased synaptic plasticity, and impaired contextual fear conditioning and spatial learning and memory. We identify chemokines¡ªincluding CCL11 (also known as eotaxin)¡ªthe plasma levels of which correlate with reduced neurogenesis in heterochronic parabionts and aged mice, and the levels of which are increased in the plasma and cerebrospinal fluid of healthy ageing humans. Lastly, increasing peripheral CCL11 chemokine levels in vivo in young mice decreased adult neurogenesis and impaired learning and memory. Together our data indicate that the decline in neurogenesis and cognitive impairments observed during ageing can be in part attributed to changes in blood-borne factors.

6.  Tϸ°û¼±ÐÔÁܰÍϸ°û°×Ѫ²¡ÓëÒȵºËØÑùÉú³¤Òò×ÓÊÜÌå1¹ý¸ß±í´ïÓйØ

¡¾¶¯Ì¬¡¿
Tϸ°û¼±ÐÔÁܰÍϸ°û°×Ѫ² ¡£¨T-ALL£©ÊÇδ³ÉÊìTϸ°ûµÄ¶ñÐÔÖ×Áö£¬¾­³£ÌåÏÖ³öÒì³£¼¤»îNotch1 ºÍ PI3K¨CAktÐźÅ;¾¶ ¡£ËäÈ»¼¤»îPI3K¨CAktÐźÅ;¾¶µÄ»ùÒòÍ»±äÒѱ»È·ÈÏ£¬Ïà¹ØµÄÉú³¤Òò×ÓÒÀÀµµÄ¼¤»îËùÆðµÄ×÷Óû¹²»Çå³þ ¡£ÃÀ¼ÓµÂ·¨¿ÆÑ§¼ÒµÄ¹ú¼ÊºÏ×÷Ñо¿·¢ÏÖÁ˰×Ѫ²¡¸Éϸ°ûµÄÍ£Ö¹ÐźÅ£¬ÏÔʾҩÎïÒÖÖÆ»ò»ùÒòɾ³ýÒȵºËØÑùÉú³¤Òò×ÓÊÜÌå1£¨IGF1R£©×è°­ÁËT-ALLϸ°ûµÄÉú³¤ºÍ»îÁ¦£¬¶øÊʶȼõÉÙIGF1RÐźſÉÒÔÖкÍÓÉÔÚͬ»ùÒò/ͬԴÒì»ùÒòµÄ´Î¼¶½ÓÊÜÌåÖеĿÉÒÆÖ²ÐÔËù½ç˵µÄ°×Ѫ²¡Æðʼϸ°ûµÄ»îÐÔ ¡£IGF1RÊÇNotch1µÄÒ»¸ö×÷Óðе㣬¶øNotch1ÐźÅ;¾¶ÊÇά³ÖT-ALLϸ°û¸ßˮƽ±í´ïIGF1RËù±ØÐëµÄ ¡£ÕâЩ·¢ÏÖÌáʾNotch¶Ô°×Ѫ²¡Æðʼϸ°û»îÐÔµÄ×÷ÓÿÉÄܲ¿ÃÅÊÜÔöÇ¿T-ALLϸ°û¶ÔÖÜΧ»·¾³ÖÐÉú³¤Òò×ӵķ´Ó³ÐÔËùµ÷ÖΣ¬²¢ÎªÓÃIGF1RÒÖÖÆ¼ÁÌá¸ßÖÎÁÆµÄÆðʼ·´Ó³ºÍºã¾ÃÖÎÓúT-ALL»¼ÕßÌṩÁ˺ÜÇ¿µÄÀíÂÛ»ù´¡ ¡£

¡¾µãÆÀ¡¿
¸ÃÑо¿±íÃ÷¼¤ËØÀà×÷ÓõÄÒȵºËØÑùÉú³¤Òò×ÓÊÜÌå1¹¦Ð§Òì³£Éý¸ß¿ÉÄܻᵼÖÂϸ°û°©±ä´Ù½øÖ×ÁöÆðʼϸ°ûµÄÔöÖ³·Ö»¯ ¡£ÕâÒ²ÌáʾÁËijЩ¼¤ËØÀàÒ©ÎïµÄʹÓÿÉÄÜ´æÔÚµÄDZÔÚÖ°©·çÏÕ ¡£

¡¾²Î¿¼ÂÛÎÄ¡¿
Journal of Experimental Medicine, 2011; DOI: 10.1084/jem.20110121
High-level IGF1R expression is required for leukemia-initiating cell activity in T-ALL and is supported by Notch signaling
H. Medyouf, S. Gusscott, H. Wang, et al.  
T cell acute lymphoblastic leukemia (T-ALL) is an aggressive cancer of immature T cells that often shows aberrant activation of Notch1 and PI3K¨CAkt pathways. Although mutations that activate PI3K¨CAkt signaling have previously been identified, the relative contribution of growth factor-dependent activation is unclear. We show here that pharmacologic inhibition or genetic deletion of insulin-like growth factor 1 receptor (IGF1R) blocks the growth and viability of T-ALL cells, whereas moderate diminution of IGF1R signaling compromises leukemia-initiating cell (LIC) activity as defined by transplantability in syngeneic/congenic secondary recipients. Furthermore, IGF1R is a Notch1 target, and Notch1 signaling is required to maintain IGF1R expression at high levels in T-ALL cells. These findings suggest effects of Notch on LIC activity may be mediated in part by enhancing the responsiveness of T-ALL cells to ambient growth factors, and provide strong rationale for use of IGF1R inhibitors to improve initial response to therapy and to achieve long-term cure of patients with T-ALL.
 

ÍøÕ¾µØÍ¼